Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(12): e0241391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370297

RESUMO

Pityopsis includes several regionally and one federally endangered species of herbaceous perennials. Four species are highly localized, including the federally endangered P. ruthii. The genus includes several ploidy levels and interesting ecological traits such as drought tolerance and fire-dependent flowering. Results from previous cladistic analyses of morphology and from initial DNA sequence studies did not agree with one another or with the infrageneric taxonomic classification, with the result that infrageneric relationships remain unresolved. We sequenced, assembled, and compared the chloroplast (cp) genomes of 12 species or varieties of Pityopsis to better understand generic evolution. A reference cp genome 152,569 bp in length was assembled de novo from P. falcata. Reads from other sampled species were then aligned to the P. falcata reference and individual chloroplast genomes were assembled for each, with manual gapfilling and polishing. After removing the duplicated second inverted region, a multiple sequence alignment of the cp genomes was used to construct a maximum likelihood (ML) phylogeny for the twelve cp genomes. Additionally, we constructed a ML phylogeny from the nuclear ribosomal repeat region after mapping reads to the Helianthus annuus region. The chloroplast phylogeny supported two clades. Previously proposed clades and taxonomic sections within the genus were largely unsupported by both nuclear and chloroplast phylogenies. Our results provide tools for exploring hybridity and examining the physiological and genetic basis for drought tolerance and fire-dependent flowering. This study will inform breeding and conservation practices, and general knowledge of evolutionary history, hybridization, and speciation within Pityopsis.


Assuntos
Asteraceae/genética , Genoma de Cloroplastos , Asteraceae/classificação , Mapeamento Cromossômico , Anotação de Sequência Molecular , Filogenia , Sudeste dos Estados Unidos , Especificidade da Espécie , Sequenciamento Completo do Genoma
2.
BMC Biotechnol ; 16(1): 47, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245738

RESUMO

BACKGROUND: The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. RESULTS: We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). CONCLUSIONS: We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Plantas/genética , Biotecnologia/tendências , Mapeamento Cromossômico/métodos , Mineração de Dados/métodos , Bases de Dados de Proteínas , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...